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Abstract. We propose a large language model explainability technique
for obtaining faithful natural language explanations by grounding the
explanations in a reasoning process. When converted to a sequence of to-
kens, the outputs of the reasoning process can become part of the model
context and later be decoded to natural language as the model produces
either the final answer or the explanation. To improve the faithfulness
of the explanations, we propose to use a joint predict-explain approach,
in which the answers and explanations are inferred directly from the
reasoning sequence, without the explanations being dependent on the
answers and vice versa. We demonstrate the plausibility of the proposed
technique by achieving a high alignment between answers and explana-
tions in several problem domains, observing that language models often
simply copy the partial decisions from the reasoning sequence into the
final answers or explanations. Furthermore, we show that the proposed
use of reasoning can also improve the quality of the answers.

Keywords: Explainable Al - Large Language Models - Natural Lan-
guage Explanations - Reasoning

1 Introduction

Today’s prevalent large language model (LLM) explainability techniques lack
the expressivity of natural language, as the explanations are limited in detail
and hard to interpret for an untrained user [I]. On the other hand, natural
language explanations [2] can potentially be easy to follow and unlimited in
expressivity, but their faithfulness is typically questionable, such as with the
simple answer-then-explain setting which tends to lead models into fabulating
their explanations. Moreover, it is even questionable whether LLMs produce
their outputs in a thought process that is anyhow related to human reasoning, as
they are in essence mere enhancements of traditional n-gram models [3]. Chain-
of-thought reasoning is one notable improvement of the decision process as the
answers tend to follow from the preceding natural language reasoning sequences,
but it is too computationally intensive for ubiquitous use.

We propose to ground natural language explanations, as well as the answers,
in a suitable resource-efficient LLM reasoning process. When converted to a se-
quence of tokens, the result of the reasoning process can then become part of
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the context observed by the model when producing its final answer or expla-
nation. The reasoning sequence does not have to be directly human-readable,
as it merely has to encode the explanation together with the answer. This in-
formation can then be simply decoded from the reasoning sequence to natural
language when the model generates the final answer or explanation. In order
for the explanations to be credible, a joint predict-explain setting can be used,
in which the answer and explanation are inferred independently of each other.
To demonstrate the plausibility of this approach, we experiment with compact
reasoning sequences that we refer to as compressed chain-of-thought reasoning.
We present the high-level overview of our methodology in Figure

We evaluate our explainability framework in an “LLM-as-a-classifier” setting,
in which we train LLMs to mimic the behavior of simple machine learning classi-
fiers such as decision trees. This setting is convenient for our approach as it can
be framed so that the final model outputs are affected by multiple intermediate
decisions, and also allows for simple and deterministic evaluation of results. Our
paper makes the following contributions to the field of LLM explainability:

1. We propose an LLM explainability technique for producing faithful natural
language explanations grounded in reasoning.
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Fig. 1: Overview of our methodology. As a first step, we gather a conversational
dataset in which for each user input, the triplet of reasoning-answer-explanation
ground truths is present. In the second step, we fine-tune a conversational GPT
model on the dataset from step 1. As a last step, we perform inference using the
fine-tuned model by first computing a reasoning sequence and then including
it in the conversation to produce the final answer or explanation, which are
obtained independently of each other.
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2. We observe that when a suitable reasoning process is included in LLM train-
ing, and the outputs of the reasoning process are placed in the LLM input
contexts, LLMs will often copy the partial decisions from the reasoning se-
quence into their answers or explanations.

3. We demonstrate the plausibility of our proposed explainability technique
by achieving a high alignment between answers and explanations in several
problem domains.

4. We show that besides enabling faithful natural language explanations, the
inclusion of the reasoning process can also improve the quality of answers.

2 Related Work

2.1 LLM Explanations

LLMs are complex black boxes, and without proper explainability, it is difficult
to understand their capabilities, limitations, and potential failures. [I/4]. Ex-
plainability techniques are commonly categorized according to several criteria:
whether explainability is incorporated into the model’s architecture and thus the
explanation is part of the model’s prediction (ante-hoc or intrinsic explanations)
or if explanations are calculated after the model has been trained and a predic-
tion has been obtained (post-hoc explanations); or whether they are related to
a single prediction (local explanations) or to the general behavior of the model
across all predictions (global explanations).

[1] categorizes local LLM explainability techniques into 4 main approaches:
feature attribution-based explanations, attention-based explanations, example-
based explanations, and natural language explanations.

Feature Attribution-based Explanations These explanations measure the
importance of each input feature (such as an input token) in relation to outputs.
Perturbation-based techniques perturb the inputs using removal or masking [56],
which may however generate out-of-distribution data. Gradient-based techniques
measure partial derivatives of outputs with respect to the input features, using
well-established explainability techniques such as gradient x input or integrated
gradients [TI8OIT0] which address some of the difficulties that occur when using
gradients naively [I1]. Surrogate model methods employ simpler white-box mod-
els to explain individual predictions, notably using the SHAP technique, which
utilizes Shapley values and has also been adapted to Transformer models [12].

Attention-based Explanations Attention-based explanations analyze the pa-
rameters or behavior of attention heads. Numerous studies have focused on ex-
plaining attention heads using visualizations, such as with token-level bipar-
tite graphs and heatmaps or neuron-level heatmaps [I3J14]. Other works have
adopted gradient-based methods using various definitions of gradient in attention
heads [I0/T5]. However, there is ongoing debate on the reliability of attention-
based explainability techniques [J.
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Example-based Explanations These explanations analyze how changes in
model inputs affect the outputs. A popular approach is to generate counterfac-
tual examples that cause important changes in the outputs by adding, altering,
masking, removing, or shuffling words in the input text [I6]. On the other hand,
adversarial examples aim to substantially alter the model outputs with barely
noticeable changes to the input text [I7JI8]. These examples can be added to the
training data to improve the robustness of the final model. Another family of
methods aims to analyze the impact of the individual training examples on the
behavior of the trained model, remarkably without the need for multiple rounds
of training [T9120].

Natural Language Explanations Natural language explanations refer to ex-
planations that take the form of text in natural language, thus making them
suitable even for a lay audience [IJ2]. The quality of natural language explana-
tions is commonly assessed according to plausibility, which checks if the explana-
tions are logically sound, faithfulness, which assesses whether the explanations
describe the true decision process of the model, and readability [2I]. Although
being a relatively large field, most natural language explanation studies focus
on other types of models than LLMs. The approaches for LLMs include using
simple explain-then-predict and predict-then-answer methods [22], training the
models using datasets of synthetic [23] or human-written explanations [24125],
and translation of natural language to symbolic solver domains [26].

2.2 LLM Reasoning

The field of LLM reasoning covers a wide range of methods aimed at improving
the model outputs or answers. Chain-of-Thought [27] is perhaps the most well-
known technique, in which the LLM is simply tasked to reason first before stating
the final answer. Extensions of this approach include self-consistency [2§], in
which multiple reasoning paths are sampled, and Tree of Thoughts [29], where
the reasoning trajectories form a tree which is explored using search strategies
such as BFS and DFS. Other notable reasoning methods include multi-agent
collaboration [30], knowledge distillation [31], process-based reward models [32],
Monte Carlo Tree Search [33], and reinforcement learning [34].

3 Methods

3.1 Reasoning-Grounded Natural Language Explanations

To achieve faithful natural language explainability, we propose to ground LLM
explanations as well as answers in a reasoning process. In order to decrease com-
putational complexity, we suggest that the output of the reasoning process does
not have to be inherently human-readable, but that it should merely contain the
information necessary to be later decoded by the LLM into the final answer or
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natural language explanation. Such reasoning can be used in a two-step conver-
sational framework, where as the first step, the reasoning sequence is generated,
and as the second step, the user (or the chat interface) sends a command mes-
sage indicating whether the model should answer the question or explain the
answer, and the model responds accordingly. In case the user chooses to obtain
both the answer as well as the explanation, it is crucial that both are obtained
independently by the chat interface to prevent the model from fabulating the
explanation or the answer being affected by the explanation.

For a clearer definition of the conversational inference process, we can define
the conversation history H, as a sequence of user question messages U; and
model answer messages A;:

Hy,=U A -Us-As-...-Up_y-Ap_y1-Up, (1)

With this notation, the message with reasoning output R,, can be defined by
the formula

R,, = ReasoningModel(H,,), (2)

and the model’s answer message A, and explanation message E,, can be
defined by the formulas

An = LLM<H7L ' Rn ' Canswer) (3>

and

En = LLM(Hn : Rn : Oexplain)7 (4>

where Cangwer and Cexplain are the “ANSWER” and “EXPLAIN” command
messages.

As a proof of concept, we experiment with using the LLM to generate com-
pact reasoning sequences in an approach that we refer to as compressed chain-
of-thought reasoning. With the use of the previous notation, we therefore set
ReasoningModel = LLM. We put three requirements on our compressed chain-
of-thought reasoning sequences:

1. The reasoning sequences should encode all the partial decisions necessary for
the model to produce the right answers.

2. The reasoning sequences should encode all the partial decisions necessary for
the model to produce the natural language explanations in the desired level
of detail.

3. The encoding of the partial decisions in the reasoning sequences should follow
a chain-of-thought ordering to allow accurate token-by-token generation by
the LLM.

Similarly to regular chain-of-thought reasoning, compressed chain-of-thought
reasoning can also potentially improve the quality of LLM answers, as more
circuit layer operations can be performed by the LLM before the final answer is
produced.
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Table 1: Examples of instances from our experimental datasets. For each in-
stance, the sections corresponding to values included in the reasoning sequence
are highlighted with bold text, and the occurrences of the ground truth class are
underlined.

Dataset

Logistic regressor

Decision tree

Natural language decision tree

Input X: [-0.4408, 0.7812, -0.3482, 0.9094, X: [0.923, 0.252] Loan amount: $115000.0 Loan-to-value
0.869, -0.0214, -0.0555, -0.8395] ratio: 92.266 Debt-to-income ratio:
<20% Applicant’s age: 25-34 Loan term:
120.0 Income: $83000.0 Property value:
$475000.0 Total loan costs: $0.0
Reasoning |-1.2465 -1.2465;-2.9536 -4.2001;- 0,0,0,1,1,1,0,0 1,0,0,0,1
2.3885 -6.5886;7.2595 0.6709;-4.5762
-3.9053;0.2138 -3.6915;-0.5065 -
4.198;6.8913 2.6933;1
Answer ‘l (1] The mortgage is issued.
Explanation|[[0, “w([0] * x[0] = -1.2465”, “y - 1.2465 = [[“0.923 < 0.3562”, false|, [“0.252 > The loan-to-value ratio is higher than

-1.2465], [1, “w[1] * x[1] = -2.9536",

[4, “w[4] * x[4] = -4.57627, “y - 4.5762 =
-3.90537], [5, “w[5] * x[5] = 0.2138”, “y
+ 0.2138 = -3.69157], [6, “w[6] * x[6] =
-0.5065”, “y - 0.5065 = -4.198"], [7, “w[7]
* x[7] = 6.8913”, “y + 6.8913 — 2.6933"],

true],

“y 0.6825”, false|, [€0.923 < 0.5613", false],
- 2.9536 = -4.20017, [2, “w[2] * x[2] = - [(0.252 < 0.2597",
2.3885”, “y - 2.3885 = -6.58867], [3, “w[3] 0.8087”, true]|, [0.252 > 0.0709”, true]|,
* x[3] = 7.2595”, “y + 7.2595 = 0.6709"], [“0.923 < 0.8676”, false|, FOUTPUT”, 0||

[€0.923 >

79%. The income is lower than $110000.
The applicant’s age is lower or equal
to 34 years. The debt-to-income ratio is
lower or equal to 40%. Therefore, the
mortgage is issued.

[“FOUTPUT”, 1]|

3.2 LLM as a Classifier

In our experiments, we adopt an “LLM-as-a-classifier” approach in which the
LLM is tasked with mimicking the behavior of a machine learning classifier.
This approach is convenient for our study as reasoning and explanation sequences
can be formulated so that they involve chains of various decisions, and we can
calculate evaluation metrics deterministically without using methods such as
LLM-as-a-judge. We experiment with three problem domains: Logistic regres-
sion, decision tree classification, and a natural language dataset generated using
decision tree logic. For each problem domain, we design the ground-truth an-
swers to simply state the classification result. For explanations, we use detailed
chain-of-thought sequences that describe the intermediate decisions necessary to
reach correct classification, and for reasoning, we extract or encode the most
important values from the explanation sequence to form minimal, “compressed”
chain-of-thought sequences. For each of the datasets, an example of an input,
reasoning, answer, and explanation text for a single instance is shown in Table

M
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Logistic Regression In this setting, we randomly generate a parameter vector
w of a logistic regression model without a bias parameter and train the LLM to
classify random 8-dimensional input vectors x according to the following formula:

1 ifwlfx>0
p— 5
y(x) {0 otherwise. (5)

Decision Tree In this setting, we randomly generate a binary decision tree of
depth 7 with the following node selection logic at each non-leaf node:

left(N) if sy x Tindex(N) > SN X N
right(N) otherwise,

next(N) = { (6)

where next(N) is the next node to be evaluated after the current node N,
left(N) and right(N) are the left and right child nodes of node N, ty is a
random threshold, index(N) is a function that selects the index of x (defined
so that two consecutive nodes can not use the same index), and sy is a random
sign of -1 or 1 that can effectively flip the comparison operator.

Leaf nodes are assigned a class of 0 or 1.

Decision Tree Encoded in Natural Language In the last setting, we exper-
iment with a decision tree that represents a mortgage application review process
encoded in natural language. We take a subset of randomly selected mortgage
applications from the 2022 version of the HMDA National Loan Level Dataset
[35] as input data and using a manually designed decision tree that represents a
fictional mortgage application review process, we generate paragraphs in which
each sentence describes a decision branch comparison for one of the input fea-
tures. Decisions are evaluated for each dataset instance from the top of the
decision tree to the leaf with the final class of issued or not issued.

4 Experiments

4.1 Categorization of Experiments

Separate Fine-Tuning for Answers and Explanations In this setting, the
training dataset is split into two separate datasets, each composed of either
input-command-answer or input-command-explanation instances. The LLM is
then fine-tuned on each of the two datasets independently, resulting in two fine-
tuned models. The inference for answers and explanations is then performed
separately using the corresponding model.
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Joint Fine-tuning This setting is similar to the previous one, but the an-
swer and explanation instances are not separated into two training datasets.
Instead, fine-tuning is performed jointly on the mix of input-command-answer
and input-command-explanation examples. Inference is performed in the joint
predict-explain approach, with the answers generated independently of the expla-
nations and vice versa, according to the command “ANSWER” or “EXPLAIN".

Joint Fine-tuning with Reasoning In this setting, the training dataset is
composed of a mix of input-reasoning, input-reasoning-command-answer, and
input-reasoning-command-explanation instances. Inference is performed in two
steps, where in the first step, the model generates a reasoning sequence, and
in the second step, the answer and explanation are generated independently
according to the “ANSWER” or “EXPLAIN” command.

In-context Learning To understand how strongly the performance of LLMs
is affected by fine-tuning to the specific problem domain, we include results for
in-context learning [36] as an informative baseline. In this setting, the LLMs
are not fine-tuned to the specific classification model, but instead obtain their
problem domain knowledge only from classification input-output example pairs
included in their input prompt. For each few-shot example, both the answer
and explanation target is included. In order to prevent the influence of human
prompt engineering, we pre-train the LLMs on a training dataset where each
training instance belongs to a different problem domain, corresponding to a
randomly generated classifier from the same model family but with different
values of model parameters than those used in the test dataset. The input of
each few-shot example is randomly generated to achieve greater diversity. We
omit the in-context learning setting in the experiments with natural language
decision trees due to the complexity of random generation of meaningful decision
processes in this problem domain.

4.2 Experimental Setup

All experiments were performed using a similar methodologyﬂ For each of the
five LLMs tested, the model’s instruction-tuned variant was used. LLMs were
trained using low-rank adaptation [37] and Adam optimizer [38] for a single
epoch on a train dataset created using 2000 classification inputs. During train-
ing, the test loss was periodically measured on a test dataset created using 200
inputs, and at the end of training, the best model checkpoint was kept. In the
in-context learning experiments, the number of few-shot examples was 5 for lo-
gistic regression and 20 for decision trees. The same training hyperparameters
were used in all experiments, namely a batch size of 4 and a learning rate of
5 x 10~° with a linear schedule and 100 warmup steps.

! The source code is available under the MIT license at https://github.com/
vcahlik/reasoning-grounded-explanations, together with our datasets.


https://github.com/vcahlik/reasoning-grounded-explanations
https://github.com/vcahlik/reasoning-grounded-explanations
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4.3 Evaluation Metrics

In our experiments, we separately measure the classification accuracy of answers
and explanations. For explanations, determining the resulting classification is
possible as we have designed the explanations as chain-of-thought sequences in
which the output class is always stated at the end. Furthermore, we measure the
rate of alignment between the answer and explanation classifications.

5 Results

5.1 Logistic Regression Results

The results for the logistic regression dataset are shown in Table [2] In-context
learning has near-perfect classification accuracy for explanations, as the param-
eters of the logistic regressor are stated in the few-shot examples and therefore it
is simple for the model to generate correct chain-of-thought explanations. How-
ever, for answers, classification accuracy is equivalent to random guessing due
to the difficulty of the task when a chain-of-thought process is not used. The
gap between the classification accuracy for answers and explanations is also wide
for most of the fine-tuning experiments without reasoning. However, when rea-
soning is used, the classification accuracies of answers increase to the level of
classification accuracies for explanations, indicating that the reasoning process
helps the LLMs achieve correct answers.

Table 2: Results on the logistic regression dataset. The experimental setup differs
in whether training was performed separately or jointly for answers and expla-
nations, whether in-context learning (ICL) was used, and whether reasoning was
used. Outputs that could not be parsed into a valid class are counted towards
errors and their rate is additionally shown in italic.

Ans./exp. training ICL Reasoning Metric ‘Llama 3 8B Mistral NeMo Mistral 7B Zephyr SFT Phi-4
Answer acc. 0.455 0.515 0.470 0.495 0.470
Separately Yes No Explanation acc. 0.990 1.000 0.995 1.000 0.990
Alignment rate 0.455 0.515 0.475 0.495 0.460
Answer acc. 0.610 0.890 0.830 0.555 0.620
Separately No No Explanation acc.|0.615 (0.140) 0.990 (0.005) 0.995 0.995 0.990
Alignment rate [0.455 (0.140) 0.880 (0.005) 0.835 0.560 0.620
Answer acc. 0.640 0.530 0.555 0.470 0.470
Jointly No No Explanation acc. 0.990 1.000 1.000 0.995 1.000
Alignment rate 0.630 0.530 0.555 0.475 0.470
Answer acc. 0.890 (0.020) 0.995 1.000 1.000 0.945
Jointly No Yes Explanation acc.|0.875 (0.030) 0.995 1.000 1.000 0.940 (0.005)
Alignment rate [0.965 (0.085) 1.000 1.000 1.000 0.995 (0.005)
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(a) Results without reasoning

(b) Results with reasoning

Fig.2: Experiments with joint training of answers and explanations on a deci-
sion tree dataset. The colored regions correspond to ground-truth classes. When
reasoning is used, answer and explanation classification errors are typically near-
perfectly aligned.

5.2 Decision Tree Results

The results for the decision tree dataset, belonging to a tree of depth 7, are shown
in Table[3] Even though 4 times as many few-shot examples were used than in the
logistic regression experiments, the classification accuracy of in-context learning
is low even for explanations, as the number of few-shot examples is still lower
than the number of decision tree leaves. The results for fine-tuning without
reasoning are similar to those with the logistic regression dataset. Results for
reasoning show higher error rates than in the logistic regression experiments,
presumably due to the less detailed reasoning process. However, answers and
explanations now remarkably contain the same classification errors in almost all
cases, as can be seen from the near-perfect alignment rates. We visualize this
phenomenon by plotting the classifications for one of the experiments in Figure
Figure |3| shows the results for the Mistral 7B model on datasets of varying
decision tree depths, indicating that classification accuracy tends to decrease
as the complexity of the trees increases. With reasoning, answer and explana-
tion classifications are near-perfectly aligned for all of the depths, in contrast to
the alignment rates for experiments without reasoning. However, explanations
without reasoning tend to have the highest classification accuracy in these ex-
periments, supposedly due to the chain-of-thought explanation sequences being
more thorough than the compressed chain-of-thought reasoning sequences.

5.3 Natural Language Decision Tree Results

The results for the natural language decision tree dataset, shown in Table [4]
are similar to those for the decision tree dataset. However, in this case, the

1.0
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Table 3: Results on the decision tree dataset, with the same semantics as in

Table 2]
Ans./exp. training ICL Reasoning Metric ‘Llama 3 8B Mistral NeMo Mistral 7B Zephyr SFT Phi-4
Answer acc. 0.535 0.510 0.490 0.490 0.535
Separately Yes No Explanation acc. 0.670 0.685 0.695 0.695 0.700
Alignment rate 0.565 0.565 0.495 0.485 0.505
Answer acc. 0.475 0.525 0.530 0.565 0.565
Separately No No Explanation acc. 0.975 0.985 0.985 1.000 0.955
Alignment rate 0.480 0.540 0.515 0.565 0.580
Answer acc. 0.475 0.450 0.500 0.475 0.520
Jointly No No Explanation acc. 0.985 0.985 0.995 0.975 0.985
Alignment rate 0.480 0.435 0.505 0.460 0.505
Answer acc. 0.745 0.835 0.845 0.875 0.715
Jointly No Yes Explanation acc. 0.745 0.835 0.840 (0.005) 0.875 0.715
Alignment rate 1.000 1.000 0.995 (0.005) 1.000 1.000

use of reasoning is associated with near-perfect classification accuracies for both
answers and explanations and with perfect alignment of classification errors.

5.4 Analysis of Errors

As a further analysis, we study the partial decisions present in the reasoning and
explanation sequences generated on the decision tree dataset by the Llama 3 8B

1.0 Decisions
O— e Explanations
' Decisions (with reasoning)
§ 0.9 Explanations (with reasoning)
3 o
[&] ——
2 0.81 S~
g N
- N\
8 0.7
=
D
[}
8
O 0.6 - \
| m— —
H = +| R ®
0.5 = =
5 6 7 8 10 11
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Fig. 3: Classification accuracies for experiments with decision trees of various

depths
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Table 4: Results on the natural language decision tree dataset, with the same
semantics as in Table [2]

Ans./exp. training ICL Reasoning Metric

‘Llama 3 8B Mistral NeMo Mistral 7B Zephyr SFT Phi-4

Answer acc. 0.810 0.825 0.850 0.850 0.815
Separately No No Explanation acc. 0.950 0.975 0.950 0.995 0.970
Alignment rate 0.860 0.840 0.850 0.855 0.835
Answer acc. 0.840 0.840 0.810 0.865 0.845
Jointly No No Explanation acc. 0.935 0.975 0.980 0.990 0.975
Alignment rate 0.825 0.855 0.820 0.875 0.830
Answer acc. 0.985 0.970 0.985 1.000 1.000
Jointly No Yes Explanation acc. 0.985 0.970 0.985 1.000 1.000
Alignment rate 1.000 1.000 1.000 1.000 1.000

model. As shown in Table [5] the final classification errors in both the reasoning
and explanation sequences are caused by the accumulation of mistakes in partial
decisions. It is noteworthy that all of the decisions are perfectly aligned between
the reasoning and explanation sequences. Although not shown in the table, we
also observed perfect alignment between the answer classifications and reasoning
classifications, meaning that all partial decisions as well as the final classifications
are aligned between the generated answers, explanations, and reasoning in this
case.

6 Discussion

It may not be immediately clear why the inclusion of reasoning sequences in
LLM input contexts leads to alignment between answers and explanations. It
seems that during training, the LLM must learn the relatively simple task of
reproducing the compressed chain-of-thought reasoning sequence to succeed at
the more difficult task of producing the one-step answer classifications. We hy-
pothesize that once the model learns to produce accurate reasoning sequences,
the internal mechanism by which the LLM produces its explanations also de-
grades to the copying of the partial decisions from the reasoning sequence. To

Table 5: Analysis of the correctness of the reasoning and explanation chain-of-
thought sequences generated by Llama 3 8B on the decision tree dataset

Partial decision
1 2 3 4 5 6 7

Reasoning accuracy [0.995 1.000 0.990 0.960 0.895 0.830 0.745 0.745
Explanation accuracy|0.995 1.000 0.990 0.960 0.895 0.830 0.745 0.745
Alignment rate 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Final classification
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gain supporting evidence for this hypothesis, we further experimented with ran-
domly flipping the partial decisions as well as the final classification decisions
present in the reasoning sequences produced by fine-tuned Llama 3 8B. As was
suspected, we observed that almost all of the changes were propagated into the
produced explanations as well as to the answers.

Our approach presented in this paper can be extended in numerous possible
ways, which we leave for future work. Primarily, the reasoning process that we
chose for our proof-of-concept experiments could be extended to wider problem
domains or even to general-purpose assistant datasets, for example by straight-
forwardly using chain-of-thought reasoning or similar approaches, such as the
reasoning process used by DeepSeek-rl [34]. It would also seem beneficial to in-
troduce a training loss that directly penalizes the mismatch between answers,
explanations, and reasoning. Furthermore, we believe that LLM applications
could benefit from other output modes besides answering and explaining. We
envision a multitask setting with additional implemented commands, such as
those for obtaining explanations of varying detail, classification of user intent,
content filtering analysis, metadata generation, and so on.

7 Conclusion

In this paper, we have proposed an LLM explainability technique for obtaining
faithful natural language explanations by grounding the LLM answers and ex-
planations in a reasoning process. We have shown that LLMs often simply copy
the partial decisions from the reasoning sequence into their answers or expla-
nations, and we utilized this phenomenon to achieve high alignment between
answers and explanations in several problem domains. Furthermore, we have
shown that besides enabling faithful explanations, the use of a reasoning process
can also lead to improvements in the quality of answers. We hope that our study
inspires further research or real-world use-cases that advance the current state
of explainability in LLMs.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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