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Abstract—We introduce dynamic auto-sizing, a novel approach
to training artificial neural networks which allows the models to
automatically adapt their size to the problem domain. The size of
the models can be further controlled during the learning process
by modifying the applied strength of regularization. The ability
of dynamic auto-sizing models to expand or shrink their hidden
layers is achieved by periodically growing and pruning entire
units such as neurons or filters. For this purpose, we introduce
weighted L1 regularization, a novel regularization method for
inducing structured sparsity. Besides analyzing the behavior
of dynamic auto-sizing, we evaluate predictive performance of
models trained using the method and show that such models can
provide a predictive advantage over traditional approaches.

Index Terms—regularization, structured sparsity, neural archi-
tecture search, AutoML, auto-sizing

I. INTRODUCTION

The field of searching for optimal model architecture and
size for a given problem is quite old. One of the older
approaches is GMDH [2] and its evolutions such as [3], and in
recent years, the search for optimal structure of deep learning
models attracted new focus as every learning iteration can be
very costly. A simple but computationally intensive approach
is to tune or search for the hyperparameters controlling the
sizes of the hidden layers, namely the numbers of individual
units such as neurons or filters. More sophisticated methods
known as neural architecture search have been proposed,
notably the family of methods based on the approach known as
auto-sizing [4, 5, 6, 7]. Auto-sizing techniques automatically
set the sizes of hidden layers without introducing significant
computational overhead, as they operate during training it-
self by pruning parameters using a standard gradient-based
optimizer. However, as these methods prune units only at
the end of training, they are still computationally ineffective;
moreover, they can not grow the models beyond their original
sizes. More complex auto-sizing techniques such as MorphNet
have been introduced that allow models to grow new units
in hidden layers [8, 9], however the sizes of the models are
constant during training with respect to resource constraints
such as the number of floating-point operations per second
(FLOPS), instead of adapting to the difficulty of the task.

This work was supported by the Student Summer Research Program 2021
of FIT CTU in Prague. The paper is based on the master’s thesis of the main
author [1] available at http://bit.ly/3UxoMau.

We build upon original auto-sizing by introducing dynamic
auto-sizing (DAS), a novel method for training feed-forward
artificial neural network models that can dynamically change
their size and structure according to the difficulty of the
problem by automatically shrinking or expanding their hid-
den layers during training. This is achieved using the novel
weighted l1 regularization technique which induces structured
sparsity in a model by penalizing every additional unit more,
until some units are regularized so much that they effectively
do not contribute to the model’s outputs. During training,
new units are periodically grown and unnecessary neurons are
periodically pruned by being completely removed from the
hidden layers, until the model stabilizes at a final architecture.
Notably, the size of resulting models increases with growing
complexity of the problem domain, and can be further con-
trolled by adjusting the strength of regularization. In this paper,
we experimentally analyze DAS on selected tasks and perform
a comparison against selected baseline models. The promising
results hint at the potential of use of the method in everyday
model training, pruning, and growth, or in situations where
the size of the model must react to concept drift in on-line or
reinforcement learning tasks.

II. RELATED WORK

A. Parameter Pruning

A classical technique on neural network parameter pruning
is Optimal Brain Damage [10], which uses the second deriva-
tive of the objective function to estimate the change caused by
deleting each parameter, and then prunes the least important
parameters. A more recent approach is to use a sparsity-
inducing regularizer, such as the l1 norm [11]. Connection
pruning was utilized for example in [12] and [13] for reducing
the sizes of AlexNet and VGG-16 convolutional models,
although with no major computational speedups, as with dense
representations of artificial neural networks, parameters are
grouped into units such as neurons or filters. Nevertheless,
such groups of parameters can be pruned using a structured
sparsity regularizer such as group lasso [14, 15].

B. Auto-Sizing

1) Original Paper: Auto-sizing [4] is a technique which
automatically determines the numbers of neurons in hidden
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layers of a fully-connected artificial neural network, and
can additionally be used to prune previously trained models.
The method works as follows: first the weights of incoming
connections of every neuron in the model are grouped, the
model is regularized using a structured sparsity regularizer, and
subsequently trained. If the regularization term is sufficiently
large, then at the end of training some of the neurons have
all of the weights of the incoming connections set to a value
close to zero. These neurons can thus be pruned from the
model altogether. In the original paper, two structured sparsity
regularizers were used, namely the l2,1 and l∞,1 norm. It
was shown that auto-sizing can lower the perplexity of neural
language models while decreasing the number of parameters.

2) Related Techniques: Approaches very similar to auto-
sizing were investigated in [5, 6] with deeper convolutional
models, and it was shown that the methods can considerably
reduce the number of parameters of a model while retaining its
predictive accuracy. Auto-sizing was also examined further by
its original authors with Transformer models in [7]. Another
paper [8] presented MorphNet, a neural network architecture
design method which aims to find an optimal model under
the specified resource constraint (such as model size or infer-
ence speed). The method works by iteratively shrinking and
growing the model while training. Shrinking is achieved by
utilization of a sparsity-inducing regularizer, more specifically
the l1 norm on the γL variables of batch normalization [16].
Growing is performed by uniformly expanding all hidden
layer sizes as much as the resource constraint allows, thus
restructuring the model while approximately preserving its
original size. A similar technique is proposed in [9], capable
of activation and deactivation of entire hidden layers by using
indicator variables indicating the presence of each component.
These variables are continuous, but effectively approach binary
values as training progresses.

C. Neural Architecture Search

Neural architecture search is a subfield of AutoML that
focuses on automating the process of designing artificial
neural network architectures. One noteworthy technique is the
differentiable neural architecture search (DARTS) framework
presented in [17], which allows to find an optimal architecture
of deep learning models by working with high-level cells
composed of arbitrary operations, and selecting over possible
combinations of these cells using softmax. Another notable
method is EfficientNet [18], which optimizes the architecture
of convolutional neural networks using a small baseline model
by estimating its optimal ratio between increasing the number
of layers, number of filters per layer, and the resolution of
inputs.

Also worth mentioning are approaches utilizing growth of
new hidden units, for example custom learning algorithms like
Cascade-Correlation [19, 20, 21]. Growth is also employed
in Topology and Weight Evolving Artificial Neural Network
(TWEANN) methods such as NEAT [22, 23, 24].

III. METHODS

A. Weighted l1 Regularization

DAS requires a structured-sparsity-inducing regularizer for
limiting the size of the model during training. For this purpose,
we introduce weighted l1 regularization. The principle is as
follows: the units (in this paper neurons or filters) in every
hidden layer are numbered from first to last, and a higher
strength of l1 regularization is set to the parameters belonging
to all incoming connections of units with a higher index. Units
with a sufficiently high index are then typically regularized so
much that all of their parameters obtain near-zero values, and
these units can thus be pruned, i.e. removed from the weight
tensors, without any relevant changes in the model’s outputs1.

The general formula for the weighted l1 regularization term
is

αΩ(W) = α

Nl∑
i=1

Nl+1∑
j=1

Pl∑
k=1

f(j)|Wijk|, (1)

where Wijk is the k-th parameter of the connection from the
i-th unit (neuron or filter) in the l-th layer to the j-th unit
in the (l + 1)-th layer, Nl is the number of units in the l-th
layer, Pl is the number of parameters per outgoing connection
from l-th layer, α is a hyperparameter controlling the emphasis
on the regularization term in contrast to the rest of the cost
function, and f is an arbitrary non-decreasing function that sets
regularization strength for the unit with index j. Therefore in
every hidden layer, the parameters of every connection leading
to the j-th unit are l1-regularized with the coefficient of αf(j).

In the experiments presented in this paper, an identity
f(j) = j is used for the function f , as this typically results in a
roughly linear relationship between the hyperparameter α and
the sizes of the resulting models. However, f can in general
take the form of any non-decreasing function passing through
origin. Regarding the bias terms, in this work we consider
them to be parameters belonging to special connections and
regularize them as well, as this is necessary for the pruning of
whole units. Weighted l1 regularization should not be applied
to the output layer.

B. Dynamic Auto-Sizing

The training of a neural network regularized with weighted
l1 regularization typically leads to the state in which for units
with a high-enough index, the optimizer has set the parameters
of all of the incoming connections to values very close to
zero. At the end of training, such units can be pruned, and the
resulting model can be used for inference. The initial layer
sizes usually have little influence over the layer sizes of the
final model, provided that they were large enough. This is
the essential principle of the original auto-sizing method as
described in section II-B1, which however used the l2,1 and
l∞,1 regularizers.

DAS brings two major improvements. The first enhance-
ment is that units that do not contribute to the model outputs
are pruned periodically instead of only at the end of training,

1We assume the use of activation functions that satisfy f(0) = 0.



Algorithm 1 Dynamic auto-sizing
1: model ← randomly initialized model, regularized with

suitable sparsity inducing regularizer
2: τ ← pruning threshold
3: γperc ← growth percentage
4: γmin ← minimum growth
5: for each epoch do
6: for each dense or convolutional hidden layer l do
7: n← number of units in l
8: γ ← max(nγperc, γmin)
9: Grow l by adding γ new units with parameters

randomly initialized and multiplied by τ
10: end for
11: Train model for one epoch on the train set
12: for each dense or convolutional hidden layer l do
13: Prune l by removing units with all parameters

smaller in absolute value than τ
14: end for
15: end for
16: return model

which improves performance as calculations are performed
with smaller tensors. The second enhancement, which ad-
dresses the problem of original auto-sizing that training has
to start with large layer sizes, is to periodically “grow” new
units by adding them to the corresponding weight tensors
with small initial random values of parameters. The parameter
values are initially so small that the outputs of the model are
virtually not influenced, but can be progressively increased
by the optimizer; otherwise, the parameters are pruned in
the next pruning step. Therefore, it is possible to start the
training with a small model as it can automatically increase
its size if necessary, leading to computational efficiency and
relaxed requirements on the initial layer sizes. The complete
pseudocode of DAS is presented in Algorithm 1.

In practice, a model trained using DAS starts with the ini-
tially set layer sizes and gradually keeps growing or shrinking.
The size of the model typically stabilizes after some number
of epochs, in a state near to an equilibrium in which all of the
units added during the last growing step are pruned during
the subsequent pruning step. Utilizing larger regularization
strength α typically leads to a smaller resulting model.

IV. EXPERIMENTS AND RESULTS

A. Setup

For the presented experiments, our implementation of DAS2

was configured as follows: growth percentage λperc and min-
imum growth λmin were set to 0.2 and 20, respectively, while
the pruning threshold τ was set to 10−3. Unless stated other-
wise, weighted l1 regularization was used, the regularization
strength α was set to 2 × 10−5, and the initial number of

2The TensorFlow implementation, together with all of the presented ex-
periments, is available under the MIT license at https://github.com/vcahlik/
dynamic-auto-sizing.

units was set to 100 for each hidden layer3. The number
of training epochs was set so that the size of the model
as well as the validation metric would be stabilized in all
experiments. In some experiments, after the model was trained
using the DAS approach, “fine-tuning” in a static manner
(without regularization, growth, or pruning) was performed,
as will be noted in the corresponding sections.

All models in the experiments are composed of five hidden
layers, usually with the first four being convolutional and
the final one being fully-connected. In case of convolutional
models, the second and fourth convolutional layer used strides
of 2 and were each followed by a dropout layer with dropout
rates of 0.2 and 0.5, respectively. Self-normalization [26] was
used to mitigate the problem of unstable gradients by standard-
izing the input data, using LeCun normal initialization for all
parameters, and using the SELU activation function for all
hidden layers. Training was performed using Adam optimizer
with the categorical cross-entropy cost in classification tasks
and the mean squared error cost in regression tasks.

B. Dependency of Discovered Layer Sizes on Various Factors

Training a DAS model with higher regularization strengths
α typically leads to smaller resulting layer sizes, as can be seen
in Fig. 1. On the other hand, DAS models tend to increase in
size with the growing complexity of the problem domain, as
can be seen in Table I, which lists the numbers of parameters,
layer sizes, and accuracies of convolutional models trained
using DAS on the MNIST, Fashion MNIST, SVHN (Street
View House Numbers) [27], CIFAR-10, CIFAR-100, and Tiny
ImageNet [28] datasets. This is not a surprising phenomenon,
as the training of a small model on a complex task typically
leads to a large training loss, which in turn leads to the
regularization term not having as much importance in the cost
function, allowing the model to grow. Further experiments

3The values of DAS hyperparameters were mostly obtained by manual
tuning and seem to work well for many problem domains. The pruning
threshold τ was set heuristically so that the changes in the model outputs
are negligible when the parameters are pruned.
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Fig. 1. Final layer sizes of fully-connected DAS models trained on the
15-puzzle dataset [25] with various regularization strengths α. Each curve
represents one model.



TABLE I
AVERAGE SIZES (TOTAL PARAMETER COUNTS AND NUMBERS OF UNITS IN HIDDEN LAYERS) OF CONVOLUTIONAL MODELS TRAINED USING DAS ON

VARIOUS COMPUTER VISION DATASETS, TOGETHER WITH CROSS-VALIDATED ACCURACIES AFTER STATIC “FINE-TUNING”.

Dataset Parameters Hidden layer sizes Cross-val. accuracy
(mean± 2SD)conv1 conv2 conv3 conv4 dense

MNIST 166K 19 14 18 34 93 99.4 % ± 0.1
Fashion MNIST 233K 22 15 21 36 124 93.3 % ± 0.5

SVHN 471K 17 16 21 45 158 93.1 % ± 0.3
CIFAR-10 665K 39 18 26 57 175 77.0 % ± 0.7
CIFAR-100 851K 66 20 30 64 194 45.1 % ± 1.1

Tiny ImageNet 5.32M 47 13 48 54 377 18.7 % ± 2.2

TABLE II
CROSS-VALIDATED ACCURACIES OF DAS MODELS TRAINED WITH WEIGHTED l1 REGULARIZATION AGAINST THE FOLLOWING BASELINES: Static A

(STATIC MODEL WITH IDENTICAL LAYER SIZES), Static B (STATIC MODEL WITH EQUIVALENT NUMBER OF PARAMETERS BUT UNIFORM SIZES OF
CONVOLUTIONAL LAYERS), AND Dynamic, l2,1 (DYNAMIC MODEL WITH COMPARABLE NUMBER OF PARAMETERS, TRAINED WITH l2,1

REGULARIZATION).

Dataset Cross-val. accuracy (mean± 2SD)
Dynamic, weighted l1 Static A Static B Dynamic, l2,1

MNIST 99.4 % ± 0.1 99.3 % ± 0.2 99.3 % ± 0.2 99.2 % ± 0.2
Fashion MNIST 93.3 % ± 0.5 92.4 % ± 0.3 92.8 % ± 0.4 92.1 % ± 0.3

SVHN 93.1 % ± 0.3 91.4 % ± 0.8 92.4 % ± 0.3 92.3 % ± 0.5
CIFAR-10 77.0 % ± 0.7 72.9 % ± 1.3 75.6 % ± 1.1 72.3 % ± 1.4

CIFAR-100 45.1 % ± 1.1 32.4 % ± 1.4 35.4 % ± 1.5 39.5 % ± 1.8
Tiny ImageNet 18.7 % ± 2.2 11.3 % ± 0.8 11.3 % ± 0.7 17.1 % ± 1.4

TABLE III
CROSS-VALIDATED ACCURACIES OF VARIOUS TYPES OF MODELS ON THE CIFAR-100 DATASET.

Type Growth Pruning Regularization Fine-Tuning Cross-val. accuracy (mean± 2SD)
Dynamic Yes Yes weighted l1 Yes 45.1 % ± 1.1
Dynamic No Yes weighted l1 Yes 45.0 % ± 1.0

Static - - weighted l1 Yes 43.8 % ± 1.5
Dynamic No Yes weighted l1 No 43.7 % ± 0.8

Static - - weighted l1 No 43.0 % ± 1.8
Static - - l1 No 43.8 % ± 1.5
Static - - None - 32.4 % ± 1.4

showed that final layer sizes are largely independent of the
initial layer sizes, as can be seen in Fig. 2.

C. Predictive Performance of Dynamic Auto-Sizing Models

We tested the predictive capabilities of DAS mod-
els against “static” models that do not utilize auto-
sizing, as well as against DAS models trained with the
group sparsity l2,1 regularization, which roughly corre-
sponds to the original auto-sizing method. On each dataset,
first we trained a convolutional DAS model (utilizing
weighted l1 regularization) in a cross-validation setting, and
used the mean resulting hidden layer sizes (measured in the
number of filters) as the architecture of a baseline static
model, labeled A. In order to determine how suitable the
layer sizes discovered by DAS are for a static model, we
trained another baseline static model (labeled B), this time
with an equal number of filters in each convolutional layer.
The size of the dense hidden layer as well as the total number
of parameters was preserved. Finally, we trained a dynamic
model utilizing the structured sparsity l2,1 regularization for

each dataset, with a regularization strength α set so that the
resulting model would have comparable number of parameters
to the other models. All models were trained for 40 epochs,
with the DAS models using static “fine-tuning” for the second
half of training. For each model, the results corresponding
to the best epoch were recorded. The learning rates were set
independently for each model and dataset using grid search.

The cross-validated results can be found in Table II. For
each dataset, the model trained using DAS with weighted
l1 regularization significantly surpassed the accuracy of each
baseline model, as verified by chi-square tests with signif-
icance level of 10−5. The largest differences were present
on the most difficult datasets. Notably, the static model B
always matched or surpassed the accuracy of static model A,
indicating that the layer sizes obtained using DAS are not
optimal for use in static models.

V. ABLATION STUDY

In order to explain the observed accuracy benefit of DAS,
we performed further tests on the CIFAR-100 dataset. First
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Fig. 2. Evolution of the number of filters in the last convolutional layer of
DAS models over the course of training on the CIFAR-100 dataset. All models
converge similarly regardless of the initial model size.

we trained a DAS model utilizing weighted l1 regularization
in a cross-validation setting. We then used the mean resulting
layer sizes as the architecture for analogous models with
deactivated growth of new units, which further differed by
the utilized regularization type, whether or not pruning of
units was activated, and whether or not the last 20 epochs
were run in the static “fine-tuning” setting (with regularization,
growth, and pruning deactivated). The learning rates as well
as the strength of l1 regularization (where utilized) were set
independently for each model using grid search. The cross-
validated results in Table III show that most of the predictive
advantage of DAS models comes from the use of weighted l1
regularization, which alone in this experiment caused a 10.6 %
accuracy boost over an unregularized model. The results also
show that an accuracy boost may be obtained using a static
model with l1 regularization, whose strength α must however
be tuned in order to find the optimal value.

VI. CONCLUSION

In this work we introduced dynamic auto-sizing, a technique
for training deep learning models that can dynamically shrink
or grow according to the difficulty of the problem domain. We
also introduced weighted l1 regularization, a novel structured
sparsity regularizer. The experiments show that DAS models
regularized with weighted l1 regularization can surpass the
predictive performance of models trained with l2,1 regulariza-
tion as well as traditional approaches. As the size of DAS mod-
els grows with increasing difficulty of the problem domain,
we hypothesize the potential of the method for adaptation
of size to concept drift in on-line or reinforcement learning
tasks, or for growth or pruning of models of unsuitable size
by manipulation of a single hyperparameter.
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