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Abstract. We address the design of heuristics for near-optimal solving of the
(N2–1)-puzzle using the A* search algorithm in this paper. The A* search algo-
rithm explores configurations of the puzzle in the order determined by a heuristic
that tries to estimate the minimum number of moves needed to reach the goal
from the given configuration. To guarantee finding an optimal solution, the A*
algorithm requires heuristics that estimate the number of moves from below.
Common heuristics for the (N2–1)-puzzle often underestimate the true number
of moves greatly in order to meet the admissibility requirement. The worse the
estimation is the more configurations the search algorithm needs to explore. We
therefore relax from the admissibility requirement and design a novel heuris-
tic that tries estimating the minimum number of moves remaining as precisely
as possible while overestimation of the true distance is permitted. Our heuristic
called ANN-distance is based on a deep artificial neural network (ANN). We ex-
perimentally show that with a well trained ANN-distance heuristic, whose inputs
are just the positions of the tiles, we are able to achieve better accuracy of estima-
tion than with conventional heuristics such as those derived from the Manhattan
distance or pattern database heuristics. Though we cannot guarantee admissibil-
ity of ANN-distance due to possible overestimation of the true number of moves,
an experimental evaluation on random 15-puzzles shows that in most cases the
ANN-distance calculates the true minimum distance from the goal or an esti-
mation that is very close to the true distance. Consequently, A* search with the
ANN-distance heuristic usually finds an optimal solution or a solution that is very
close to the optimum. Moreover, the underlying neural network in ANN-distance
consumes much less memory than a comparable pattern database. We also show
that a deep artificial neural network can be more powerful than a shallow artifi-
cial neural network, and also trained our heuristic to prefer underestimating the
optimal solution cost, which pushed the solutions towards better optimality.

Keywords: (N2 − 1)-puzzle, heuristic design, artificial neural networks, deep
learning, near optimal solutions

1 Introduction

The (N2–1)-puzzle [40, 33] due to its challenging difficulty and yet simple formulation
became an important benchmark for a variety of problem solving methods and heuristic
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search algorithms [4, 15]. The task in the (N2–1)-puzzle is to rearrange N2− 1 square
tiles on a square board of size N×N by shifting them horizontally or vertically into a
configuration where tiles are ordered from 1 to N2−1 (see Figure 1 for an illustration
of the 8-puzzle). Tiles can never overlap so there is one blank position on the board that
enables one tile at a time to move; that is, a tile can be moved horizontally of vertically
to the neighboring blank position in one step.

It is known that finding an optimal solution of the (N2–1)-puzzle, that is, finding the
shortest possible sequence of moves that reaches the goal configuration from the initial
one, is an NP-hard problem [25, 26, 5]. Hence the (N2–1)-puzzle is considered to be a
challenging benchmark problem for testing variety of algorithms. On the other hand,
the difficulty of the puzzle is not absolutely prohibitive as it belongs to the NP-class
which can be seen due to existence of algorithms that can generate feasible sub-optimal
solutions of polynomial length (O(N6) to be precise for the (N2–1)-puzzle case).

Various approaches have been adopted to address the problem using search-based
and other techniques. They include heuristics built on top of pattern databases [8, 10]
which are applicable as part of the A* algorithm to obtain optimal solutions. The disad-
vantage of optimal search-based algorithms is their limited scalability for larger N even
with advanced heuristics. So far the best known result is an optimal A*-based algorithm
for the 24-puzzle by Korf [16] built on top of sophisticated pattern database heuristics.
The 35-puzzle is still waiting for an optimal algorithm that can finish in reasonable time
on commodity hardware.

Different approaches are represented by solving the puzzle (N2–1)-puzzle sub-opti-
mally using rule-based algorithms such as those of Parberry [22] or those using per-
mutation group reasoning [17]. The advantage of these algorithms is that they are fast
and can be used in an online mode. However, solutions produced by these algorithms
are usually very far from the optimum, which precludes their application in practice.
These algorithms are commonly used to test existence of a solution before an optimal
algorithm is started.

Various attempts have been made to combine good quality of solutions with fast
solving by unifying above streams of research. For example improvements of sub-
optimal solutions by using macro operations, where instead of moving single tile to
its goal position, multiple tiles are taken together to form a so called snake that moves
as a single entity, were introduced in [39]. Moving tiles together consumes fewer moves
than if tiles are moved individually. Another approach is to design better tile rearrange-
ment rules that by themselves lead to shorter solutions as suggested in [23]. In the
average case, these rule-based algorithms can generate solutions that are much better
that those produced by plain rule-based algorithms [24].

1.1 Contributions

In this paper, we present an attempt to solve the (N2–1)-puzzle near-optimally or op-
timally using a heuristic based on artificial neural networks (ANNs) [14] called ANN-
distance. Our heuristic is intended to be integrated into the A* algorithm [13]. Particu-
larly our contributions are as follows:

• We design a near-admissible heuristic to be used in the A* algorithm. Unlike con-
ventional heuristics used in A* that focus on finding optimal solutions and must
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Fig. 1. An illustration of an initial and a goal configuration of the 8-puzzle. [2]

therefore strictly satisfy the admissibility requirement, our heuristic only tries to
make the best possible estimation while admissibility can be occasionally violated
(that is, the heuristic overestimates). Specifically we try to directly calculate the
estimation of the number of moves remaining to reach the goal configuration using
an ANN. This is in contrast to admissible heuristics that try to make estimations
from below which often leads to significant underestimations.

• We test the hypothesis that our ANN-distance heuristic does not violate the ad-
missibility requirement often and provides better estimations than heuristics based
on pattern databases. That is, we have shown in our experimentation with the 15-
puzzle that the A* algorithm with ANN-distance produces sub-optimal solutions
only rarely. Moreover, estimations made with ANN-distance are closer to the true
minimum number of moves required than those obtained from the comparable 7-8
pattern database heuristic [9].

This paper extends our previous work on the topic of ANNs in (N2–1)-puzzle solv-
ing presented in [2]. Specifically we improved the training process of the ANN-distance
heuristic so that it generates better results than those presented in [2]. Additionally we
present here a significantly extended set of experiments that did not fit in the original
conference format.

The paper is organized as follows: we first introduce the (N2–1)-puzzle formally
and put it in the context of related works. Then, we describe the design of the ANN-
distance heuristic and the process of its training. Finally, we experimentally evaluate
ANN-distance as part of the A* algorithm and compare it with A* using the 7-8 pattern
database heuristic. All tests are done on random instances of the 15-puzzle.

2 Background

In this section we will formally define the (N2–1)-puzzle and introduce artificial neural
networks.
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2.1 The (N2–1)-puzzle

The (N2–1)-puzzle consists of a set of tiles T = {1,2, ...,N2−1} of uniform size 1×1
placed in a non-overlapping way on a square board of the size N×N. There are N×
N positions on the board numbered from 1 to N. One position on the board remains
empty. A configuration (placement) of tiles can be expressed as assignment c : T →
{1,2, ...,N2} for which it holds that c(i) 6= c( j) whenever i 6= j.

Definition 1. The (N2–1)-puzzle is a quadruple PN2−1 = [N,T,c0,cg], where c0 : T →
{1,2, ...,N2} is an initial configuration of tiles and cg : T → {1,2, ...,N2} is a goal
configuration (usually an identity with cg(t) = t for t = 1,2, ...,N2−1).

The movements of tiles are always possible into blank neighboring positions; that
is, one move at a time. The task in the (N2–1)-puzzle is to rearrange tiles from initial
configuration c0 into desired goal configuration cg using allowed moves. Since there
is only one blank position, movements of tiles naturally correspond to: Left, Right,
Up, Down movements while it is unambiguous where the movement takes place. The
solution sequence can be expressed as σ = [m1,m2, ...,ml ] where mi ∈ {L,R,U,D} with
natural meaning L=Left, R=Right, U=Up, and D=Down for i = 1,2, ..., l; l denotes the
length of solution. We call solution σ optimal if l is as small as possible, otherwise we
say that the solution is sub-optimal (illustration of a solution is shown in Figure 1).

2.2 Artificial Neural Networks

In our attempt to design a heuristic that gives very precise estimations we made use of
a feed-forward artificial neural network (ANN). The ANN consists of multiple com-
putational units called artificial neurons that perform simple real-valued computations
on their input vectors x ∈ Rn as follows: y(x) = ξ(∑n

i=0 wixi) where w ∈ Rn is vector
of weights, w0 ∈ R is a bias and ξ is an activation function, for example a sigmoid as
follows, where λ determines the shape of the sigmoid:

ξ(z) =
1

1+ e−λz (1)

Neurons in an ANN are arranged in layers. Neurons in the first layer represent the
input vector. Neurons in the second layer get the outputs of neurons in the first layer
as their input, and so on. At every layer neurons are fully interconnected with neurons
from the previous layer. Outputs of neurons in the last layer form the output vector.
Usually we want an ANN to respond to given inputs in a particular way.

So mathematically the network implements a function φ : Rn → Rm where n is
the dimension of input and m is the dimension of output. Our assumption is that the
heuristic function determining the minimum number of moves required to reach cg
from some given configuration c can be approximated using the feed forward neural
network. Hence after encoding cg and c as a real-valued vector and giving it at the input
of the network we want the network to respond with the minimum number of moves at
the output layer.

After deciding a topology of the network, that is how many layers and how many
neurons per layer it should consist of, this is achieved through the process of learning
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[27, 29]. Learning usually does not alter the topology but only sets the weight vectors
w and biases w0 of individual neurons so that for a given input xi the network responds
with a desired output yi in the last layer.

The network is trained for a data-set which contains pairs of input xi and desired
output yi. If the ANN is designed well, that is if it has the proper number of neurons
per layer and if the data-set is representative enough, then the ANN can appropriately
respond even to inputs that are outside the training data-set. We then say that the ANN
generalizes well: this is the goal in our design as well.

However, we are aware of the challenging aspect of the task as it is unrealistic to
train the network for all possible configurations c of the (N2–1)-puzzle, of which there
are as many as N! (N!/2 solvable ones).

3 Related Work

MAPF Algorithms. The (N2–1)-puzzle represents a special case of a problem known
as multi-agent path finding (MAPF) on graphs, where instead of the N×N-board we
are given an undirected graph G = (V,E) with so called agents occupying its vertices.
The graph models a more general environment in which agents can move across edges.
In MAPF, there is at most one agent per vertex, and similarly to the N×N-board we
can move an agent into the empty neighboring position (vertex). The task is to move
agents so that each agent reaches its unique goal position (vertex). The (N2–1)-puzzle
can be represented as MAPF if we replace each position on the board with a vertex and
connect the vertex with vertices corresponding to neighboring positions on the board.
That is, we obtain a 4-connected grid of size N×N with one empty vertex where initial
positions and goals of agents are set according to the initial and goal configuration of
the puzzle.

Generally all MAPF algorithms rely on the fact that the environment is typically not
fully occupied by agents in MAPF - they are often adaptive with respect to the density
of agents. In sparsely occupied cases MAPF algorithms typically do not consider all
possible interactions between agents and tend to plan individual paths as independently
as possible. Hence these algorithms cannot benefit from their advantages in case of the
(N2–1)-puzzle as there is only one empty position.

Search Algorithms in Transformed Spaces. ICTS [31, 32] and CBS [30, 1] on the
other hand view the search space differently, not as a graph of states. ICTS searches
through various distributions of costs among multiple individual agents while the high
level mechanism iterates the overall cost from the lower bound upwards until a solvable
cost is reached. The CBS algorithm searches the tree of conflicts between agents and
resolutions of these conflicts. Initially CBS searches for individual paths as if other
agents are not present in the instance. Paths found in this way are then verified with
respect to collisions between agents. If there are collisions constraints to avoid them are
introduced into the individual path search process and the high level is branched as each
collision can be usually resolved by two cases - the first or the second agent avoids the
place and time of the collision.

Efficient Rule-based Algorithms. Besides search-based algorithms there are also
polynomial-time rule-based algorithms like BIBOX [35, 36] and Push-and-Swap [19].
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They use predefined macro-operations to reach the goal configuration. Solutions gen-
erated by rule-based algorithms are sub-optimal. As these algorithms are designed for
practical use, solutions generated by them are closer to the optimum than in the case of
permutation group-based algorithms.

Compilations-based Algorithms. Important group of optimal solving techniques
for MAPF and consequently for the (N2–1)-puzzle is represented by compilation-based
algorithms. These algorithms reduce the task of finding solution to MAPF to some of
the existing formalism such as propositional satisfiability (SAT) [37, 38], constraint sat-
isfaction (CSP) [18] or answer set programming (ASP) [7]. This approach is character-
ized by employing efficient off-the-shelf solvers for the target formalism, an efficiency
one can hardly achieve by own dedicated solver. Moreover, any progress of the tar-
get formalism solver is immediately translated into the progress of solving the original
problem.

A*-based Search Algorithms. There are currently many solving algorithms for
MAPF and consequently for the (N2–1)-puzzle. Optimal A*-based algorithms include
independence detection - operator decomposition ID-OD [34] that tries to make use
of not fully occupied graph by dividing the set of agents into multiple independent
groups that are solved separately. This is in the case of algorithms of exponential time
complexity useful technique as it divides the exponent by the number of independent
groups.

As for the combination of state-space search and neural networks, Samadi et al.
[21] successfully used an ANN-based heuristic function to estimate optimal solution
costs of the 15-puzzle. They used the estimates of several pattern database heuristics
as inputs to their neural network. They used a custom error function in order to penal-
ize overestimation, biasing the heuristic’s estimates towards admissibility. They used
the RBFS search algorithm. The unbiased ANN heuristic resulted in search trees which
were smaller by a factor of 10 than those generated with the 7-8 pattern database heuris-
tic, and the generated solutions were inadmissible by about 4 %. Using a biased ANN
heuristic further pushed inadmissibility to only 0.1 %, but increased the size of the gen-
erated search trees. In [20] by Ernandes and Gori, the authors used an artificial neural
network to estimate the optimal solution costs of the 15-puzzle, using only the positions
of individual tiles as input features. They used a very small network with a single hidden
layer of only 15 neurons. IDA* with their heuristic then achieved an optimal solution in
about 50 % of cases, and compared to the Manhattan distance heuristic, time cost was
reduced by a factor of about 500.

Arfaee et al. [28] used a bootstrapping procedure which allowed them to eventu-
ally solve random 24-puzzle instances even without starting with a sufficiently strong
heuristic. They started with an untrained artificial neural network, which they used as a
heuristic to solve a number of 24-puzzle instances. Even though this procedure failed to
solve most of the instances within time limit, they used the handful of solved instances
to train the next iteration of the neural heuristic. Repeating this procedure several times
resulted in obtaining a very powerful ANN-based heuristic, which was able to solve the
majority of the input set of random 24-puzzle instances. Suboptimality of the solutions
was about 7 %.
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4 Designing a New Heuristic

The ANN-distance heuristic will be integrated as the underlying heuristic of the A*
graph search algorithm. Let us first describe basics of the A* algorithm. A* explores
the space of possible configurations of the puzzle. It maintains the OPEN list in which
it stores candidate configurations for further exploration. The algorithm always chooses
configuration c from OPEN with the minimum g(c)+h(c) for the next expansion, where
g(c) is the number of steps taken to reach c from c0, and h(c) is the estimation of the
number of remaining steps from c to cg. It is generally true that with an admissible
heuristic function, the closer h is (from below) to the true number of steps remaining,
the fewer configurations the algorithm will expand. With an inadmissible heuristic func-
tion, the situation is more complicated. Experiments have shown that the weighted A*
algorithm, in which the heuristic estimates are scaled by a weight W > 1 (and are thus
inadmissible), reaches the solution faster with greater values of W , but the obtained so-
lutions are typically further and further from the optimum. However, it is reasonable to
expect that if the estimates produced by the ANN-distance heuristic are relatively ac-
curate and do not overestimate the optimal solution cost too often, the solutions found
by A* will not be too far from the optimum. Some of the ANN-distance heuristics will
therefore be designed to produce as accurate estimates of the optimal solution costs as
possible. Other ANN-distance heuristics will be trained to underestimate the optimal
solution costs, which can be expected to result in solutions whose cost will be closer to
the optimum.

4.1 Encoding the Input and Output

The input to the underlying fully-connected feed-forward ANN of the ANN-distance
heuristic are the one-hot encoded positions of the tiles, including the blank. In order to
one-hot encode the tile positions of a 15-puzzle instance, a 256-dimensional vector is
required. This vector is the input to ANN. The output of the network is a single neuron
outputting the estimated optimal solution cost.

4.2 Design of the Neural Networks

The hyperparameters of the ANN, most importantly the layer sizes, were calculated
using grid search [12]. The most powerful architecture turned out to be a deep ANN
with 5 hidden layers composed of 1024, 1024, 512, 128 and 64 hidden neurons. This is
a relatively large network, but the 15-puzzle is a complex problem domain, with some
of the configurations being deceptive — there are for example states with only a few
tiles being out of their place, yet with a high optimal solution cost. The ANN must be
flexible enough to learn to recognize these quirks.

Several state-of-the-art techniques for training deep ANNs were used. These tech-
niques include the Adam optimizer, ELU activation function, dropout regularization,
and batch normalization [11]. Layer weights were initialized with He initialization [11].
The output neuron used no activation function. Learning rate was set experimentally.
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Fig. 2. The distribution of the optimal solution lengths of boards in the training dataset

4.3 Training Data and Training

The training dataset was obtained by randomly shuffling the boards, using both high
and low shuffle counts. This resulted in some of the boards having high optimal solu-
tion cost of about 50, but with some of the boards still having a low optimal solution
cost. This is preferable, as the ANN-distance heuristic must correctly estimate optimal
solution costs when the search algorithm is both far away and close to the solution.
However, preliminary tests with the pattern database (PDB) heuristic revealed that the
A* algorithm spends most of the time far away from the solution. Hence we took the
assumption that queries to the ANN-distance heuristic will follow a similar distribution
of distances from the optimum, and we selected instances into the training dataset that
are mostly hard. In total, there are 4.8 million instances in the training dataset, which
is a relatively large number, but still just a 1

107 of the total size of the state-space of the
15-puzzle. The optimal solution costs were calculated with the IDA* algorithm with the
underlying PDB 7-8 heuristic. The distribution of boards in the training dataset can be
seen in figure 2.

The cost function used while training some networks was mean squared error (MSE).
However, for some networks, a novel cost function, which we named asymmetric mean
squared error (AMSE), was used. This function is basically the MSE cost function
skewed to one side. The AMSE function is defined as

AMSE(Ŷ ,Y ) =
1
n

n

∑
i=1

(Ŷi−Yi)
2(sgn(Ŷi−Yi)+α)2, (2)

where n is the number of instances, Ŷ is a vector of the estimated values, Y is a vector
of the target values, and α is a parameter between 0 and 1, which controls the skew of
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the function. The closer α is to 1, the more the overestimations are penalized. AMSE
with α = 0 is equal to the mean squared error cost function. The behavior of AMSE
cost denoted as c(di) for different estimation errors di and various values of α is shown
in figure 3.

Training was performed by gradient descent using reverse-mode autodiff, a process
historically known as backpropagation [11, 6]. The Adam optimizer was used. Train-
ing was run for 40 epochs, which took about 3 hours 1. During training, the training
cost kept decreasing steadily, but the cost on the validation set kept fluctuating, so the
network’s weights were saved after each epoch and at the end of training, and only the
weights corresponding to the lowest validation error were restored and saved as the final
model.

4.4 Resulting ANN-distance heuristics

Several versions of the ANN-distance heuristic were chosen for further experimental
evaluation. This included the ANN-distance heuristic with a deep underlying ANN
trained with the MSE cost function (with the layer sizes stated in section 4.2), then
another heuristics with the underlying deep ANN trained with the asymmetric AMSE
cost function with α of 0.4 and 0.8, and a final heuristic with a shallow ANN composed

1 All experiments were run on an eight-core Intel Xeon E5-2623 v4 CPU with 30 GB of RAM
and a NVIDIA Quadro P4000 graphics card under Debian Linux. The ANN was implemented
and trained using the Keras library [3] with the TensorFlow backend.
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Fig. 4. Histogram of optimal solution costs of boards in the evaluation dataset

of a single hidden layer of 2752 neurons, which is the same total number of neurons as
that of the deep ANNs.

5 Experimental Evaluation

Our experimental evaluation was focused on competitive comparison of the ANN-
distance heuristics against the admissible PDB 7-8 heuristic (the pattern database heuris-
tic with pattern sizes 7 and 8) and its weighted variants, which are inadmissible.

The tests were run on a set of 1172 instances obtained as random permutations.
The distribution is shown in figure 4, the mean optimal solution cost of boards in the
evaluation dataset is 52.8. We focused on measuring the performance of the heuristics
in two scenarios:

1. when they are used to obtain single estimations
2. when they are used as the underlying heuristic of the A* algorithm

5.1 Evaluation on single estimations

The first experiment tested how closely the true distance from the goal configuration
has been estimated by the PDB heuristics and by the ANN-distance heuristics. The re-
sulting distributions of estimations are shown in figures 5 and 6. It can be seen that the
shapes of the distributions are similar to the shape of the distribution of the true optimal
solution costs of boards in the evaluation dataset. The biggest difference over the eval-
uation dataset is that the distributions are shifted to more positive or negative values.
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Fig. 6. ANN-distance heuristics: histogram of single estimations

The PDB 7-8 heuristic produces smaller estimates than its weighted counterparts, and
the distributions of the estimations of the weighted PDB 7-8 heuristics are also spread
more widely than the distribution of the optimal solution cost estimates produced by
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Fig. 7. PDB 7-8 heuristics: histogram of errors on single estimations

the original PDB 7-8 heuristic. The ANN-distance heuristic produces optimal solution
cost estimates whose distribution is quite similar to the true distribution of the optimal
solution costs, with the mean of 52.9. The ANN-distance heuristic that was trained to
underestimate its estimations using an asymmetric cost function with α = 0.8 produces
estimates which are somewhat lower than those produced by the original ANN-distance
heuristic trained with the mean squared error cost function, with the mean of 48.9.

The distributions of estimation errors with respect to the true optimal solution costs
are shown in figures 7 and 8. Clearly, both of the ANN-distance heuristics are inad-
missible according to the test. The ANN-distance heuristic trained with the MSE cost
function has the error’s mean of 0.06 and the error’s standard deviation of 1.42, which
means that its estimations are relatively accurate. The ANN-distance heuristic trained
with the AMSE cost function with α = 0.8 tends to underestimate the cost for almost all
estimations, with the mean error of -3.9, but is still inadmissible. On the other hand, the
PDB 7-8 heuristic tends to strongly underestimate the optimal solution costs by default,
and is more accurate only after being weighted by W = 1.15.

5.2 Evaluation on A* searches

In the second experiment, the heuristics were evaluated as the underlying heuristics of
the A* algorithm. No time limit was imposed on the runs of the A* algorithm, and thus
the solutions to all boards with all heuristics were found. The results are presented in
table 1. The meaning of the columns is as follows: the first column states the heuris-
tic used, the second column represents the average cost of the solutions found, the third
column states the average number of nodes expanded by the searches, the fourth column
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Fig. 8. ANN-distance heuristics: histogram of errors on single estimations

represents the average runtime of the search, the fifth column states what percentage of
solutions found were optimal. The sixth column represents the average suboptimality
of solutions, measured in percentages. Average suboptimality is defined as the aver-
age cost of the solutions, divided by the average optimal solution cost (and after this
computation, 1 is subtracted and the result is multiplied by 100 to obtain percentages).
The last column shows the average number of expanded nodes per second. The rows
simply represent the results of the heuristics: the first four rows represent the pattern
database heuristic and its weighted variants, the fifth row represents the deep ANN-
distance heuristic trained with the MSE cost function, the sixth row is the shallow ANN
trained with the MSE cost function, and the last two rows are the deep ANN-distance
heuristics trained with the AMSE cost function.

Heuristic Cost Expanded Time %Opt %Avg. subopt. Expanded/s.
PDB 7-8 52.8 62,222 6.946 100 0 8958
PDB 7-8, W=1.15 53.4 3,296 0.346 71 1.19 9526
PDB 7-8, W=1.3 55.2 1,017 0.107 38 4.46 9505
PDB 7-8, W=1.45 57.5 540 0.056 25 8.86 9643
ANN 53.7 355 2.405 61 1.62 148
ANN, 1 h.l. 53.7 1,577 5.988 60 1.69 263
ANN, AMSE (α=0.4) 53.5 532 3.543 67 1.34 150
ANN, AMSE (α=0.8) 53.5 2,576 16.812 69 1.23 153

Table 1. Performance analysis of A* running with various heuristics
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Heuristic Opt. Opt.+2 Opt.+4 Opt.+6
PDB 7-8 1172 0 0 0
PDB 7-8, W=1.15 834 309 29 0
ANN 718 409 44 1
ANN, 1 h.l. 701 421 49 1
ANN, AMSE (α = 0.4) 786 357 29 0
ANN, AMSE (α = 0.8) 814 336 21 1

Table 2. Suboptimality of the solutions found by A*

From the table, it is clear that in terms of the number of expanded nodes, the deep
ANN-distance heuristic trained with the MSE cost function performs significantly bet-
ter than all of the heuristics based on pattern databases. The number of expanded nodes
has been decreased by two orders of magnitude compared to the unweighted PDB
heuristic. However the success rate of finding the optimal solutions is also relatively
low, with the deep ANN-distance heuristic leading to an optimal solution only in about
60 percent of cases. Exact number of unsuccessful searches for the optimum depending
on the distance from the optimum can be found in table 2.

The suboptimality of the solutions was further decreased by the ANN-distance
heuristics trained with the AMSE cost function. However, even though the heuristic
trained with the AMSE cost function with α = 0.8 underestimates almost all of its es-
timations, it still lead to suboptimal solutions being found by the A* search algorithm
in about 30 % of cases. It is possible that this suboptimality mostly comes from the
inconsistency of the heuristic, as the graph version of the A* algorithm only guarantees
optimality when the heuristic function used is consistent.

An interesting result is that the ANN-distance function based on a shallow ANN
lead to a significantly higher amount of expanded nodes than the deep ANN-distance
heuristic. Even during training, the prediction cost on the training set was larger with
the shallow ANN than with the deep ANN. This suggests that the use of deep learning
can be beneficial even in the field of heuristic design.

The biggest weakness of the ANN-distance heuristic is the speed of inference, as
the pattern database heuristics are faster at making estimations by almost two orders of
magnitude. The shallow ANN’s estimations are slightly faster than those of the deep
ANNs. On the other hand, the underlying neural networks in the ANN-distance heuris-
tics only take up about 20 MBs of memory, which is a very low number compared to
the PDB 7-8 heuristics, which take up about 4.5 GBs of memory.

The distributions of the number of nodes expanded by the A* searches with the deep
unbiased ANN-distance heuristic and the unweighted PDB 7-8 heuristic can be seen in
figure 9.

5.3 Competitive comparison against heuristics presented in other studies

The ANN-distance heuristic functions presented in this thesis can be directly compared
to neural heuritics presented in two earlier studies, both of which were mention in sec-
tion 3. The first paper by Ernandes and Gori from 2004 [20] created a heuristic function
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Fig. 9. Histogram of number of nodes expanded during A* search (trimmed)

based on an artificial neural network, which was then evaluated using the IDA* al-
gorithm. The second paper by Samadi et al. from 2008 [21] also designed a heuristic
function based on an ANN, but trained it using outputs of other heuristic functions
as features, namely the outputs of the PDB 7-8 heuristic and the Manhattan distance
heuristic. Samadi et al. evaluated their heuristic using the RBFS search algorithm. Nei-
ther of these studies presented the performance of their network on single estimations,
and the algorithms used differ, so comparison against these heuristics is difficult. Nev-
ertheless, the results are presented in table 3.

It is evident that the number of expanded nodes is significantly smaller with the
unbiased ANN-distance heuristic presented in this paper than with the heuristics of
Samadi et al. and Ernandes and Gori. Our ANN distance expands by two order of mag-
nitudes fewer nodes than previous ANN-based heuristics. It is however likely that at
least the heuristic presented by Ernandes and Gori would perform better in number of
expanded nodes if ran as part of the A* algorithm, since IDA*, which they used, tends
to run the low-level multiple times and the low-level revisits large subtrees, and thus the
IDA* algorithm expands more nodes than necessary.

As for optimality, Ernandes and Gori stated that 28.7 % of their solutions were
optimal, which is far worse than roughly 60 % solutions obtained by the unbiased
ANN-distance heuristic presented in this paper. However, Samadi et al. stated that
suboptimality of their biased heuristic is less than 0.1 %, which is significantly lower
than the suboptimality of 1.23 % of the biased ANN-distance heuristic trained with the
AMSE cost function with α = 0.8. Unfortunately, it is not clear whether Samadi et al.
used exactly the same definition of suboptimality.
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Study Algorithm Heuristic Avg. cost Avg. nodes Avg. time (s)
This A* ANN 53.7 355 2.405
This A* ANN, AMSE (α = 0.4) 53.5 532 3.543
This A* ANN, AMSE (α = 0.8) 53.5 2,576 16.812
[20] IDA* ANN 54.5 24,711 7.38
[21] RBFS ANN (MD+PDB) 54.3 2,241 0.001
[21] RBFS ANN (MD+PDB, asym. cost) 52.6 16,654 0.021

Table 3. Comparison of search algorithms against heuristics presented in other papers

The runtime comparison is included for completeness, but is not very informative
when compared over different studies, as for example Samadi et al., whose algorithm
only takes a millisecond to find a solution, had likely well optimized their code.

5.4 Analysis of the behavior of A* search with the underlying ANN-distance
heuristic

When evaluating a heuristic function, it is important to know what parts of the state-
space the algorithm spends the most time in. This analysis can be performed by cal-
culating the optimal solution cost belonging to each expanded state. The distribution
of the optimal solution costs belonging to nodes expanded by the A* algorithm can be
seen in figure 10. The data were obtained by running an IDA* search with the PDB
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Fig. 10. Histogram of optimal solution costs of nodes expanded during A* search with the ANN-
distance heuristic trained with the MSE cost function
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Fig. 11. Histogram of optimal solution costs of nodes expanded during A* search with the PDB
7-8 heuristic

7-8 heuristic to get the optimal solution cost, for each state the A* search with the deep
ANN-distance heuristic (trained with the MSE cost function) expanded, for boards ob-
tained as random permutations.

It can be also observed that the distribution is much more skewed to the left than the
distribution of optimal solution costs of states expanded by the A* algorithm with the
underlying PDB 7-8 heuristic, which is presented in figure 11. This could mean that the
heuristic estimations are very accurate for instances of high optimal solution costs, so
the search algorithm with the ANN-distance gets faster from the initial state than with
the PDB 7-8 heuristic.

6 Discussion and Conclusion

This paper refers on the use of artificial neural networks as the underlying paradigm
for the design of heuristics for the (N2–1)-puzzle. We designed a heuristic called ANN-
distance with an underlying deep artificial neural network that estimates for a given
configuration the distance in terms of the minimal number of moves required to reach
the goal configuration. Although the ANN-distance heuristic is not admissible, it is rela-
tively accurate and does not significantly overestimate the true distance. As a result, the
ANN-distance usually yields an optimal solution when used as a part of A*. Moreover,
since ANN-distance is relatively precise in its estimations, A* with the ANN-distance
heuristic expands much fewer nodes than with other heuristics like 7-8 pattern database.

When compared to a shallow artificial neural network with a single hidden layer,
the ANN-distance with an underlying deep ANN gives more accurate estimations and
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therefore leads to lower number of nodes expanded by the A* search. This demon-
strates that deep learning can be successfully applied to heuristic design in symbolic
domains like the (N2–1)-puzzle. We also tried to bias the ANN-distance heuristic to
prefer underestimating its estimations, which resulted in a solutions that are closer to
the optimum.

When compared to the results of other scientific papers, the ANN-distance heuristic
performs significantly better in the (N2–1)-puzzle domain than any other similar previ-
ously designed heuristic. Our ANN-distance improved the number of expanded nodes
over the best published heuristic functions based on artificial neural networks by an or-
der of magnitude. It seems that the cause of the performance gain was a combination of
a much larger artificial neural network and training dataset, as well as the use of deep
learning and other modern techniques for ANN training.

An important advantage of the ANN-distance is that it consumes much less memory
than a comparable pattern database heuristic. This feature enables the use of similar
ANN-based heuristics even in cheap embedded systems.

ANN-based heuristics similar to our ANN-distance could be used in other problem
domains similar to the (N2–1)-puzzle. Our hypothesis is that it could be possible to use
these heuristics even in problem domains which are mostly opaque, that is, problem
domains whose inner structure is not well understood by humans.

As we continue our work, we plan to move to the domain of the 24-puzzle. As
it will be much more challenging to obtain a sufficient number of training instances,
transfer learning could be used to utilize the ANN-distance heuristic trained on the 15-
puzzle domain. Such a heuristic function could then be improved with the bootstrapping
algorithm [28]. We also plan to perform further experiments with the distribution of the
boards in the training dataset.
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